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One of the ma jo r  c h a r a c t e r i s t i c s  of a ma te r i a l  is its rup ture  s t rength,  which de t e rmines  the s ize  of 
the f law bringing about f a i lu re  at a given s t r e s s  level  [1]. However ,  the growth r a t e  of a fatigue c rack  may 
prove  to be  the l imi t ing  fac to r  in s t rength  ca lcula t ions  under  va r i ab l e  load conditions,  r a t h e r  than the rup-  
tu re  s t rength  d i rec t ly .  Because  of this ,  the phenomenon of fat igue growth of c r a c k s  under  cyclic  loading 
has  been  studied by many authors  ove r  the past  fifteen y e a r s .  A compar i son  of the theory  of the growth of 
fat igue c r acks  [2] and avai lab le  exper imenta l  data is p resen ted  below. 

1. Phenomenological  Descr ip t ion  of the Developmental  P r o c e s s  of Fat igue C r a c k s .  An e las toplas t ic  
model  of the body was invoked to account  for  the development  of c r a c k s  under  cycl ic  loading, and the fine 
s t r u c t u r e  of the t ip of the c r a c k  has been examined [2]. The applicat ion of genera l  cons idera t ions  in d imen-  
sional  ana lys i s  and the I r w i n - O r o v a n  energy  concept  extended to the c a s e  of nonsta t ionary  development  of 
c r a c k s  has made it poss ib le  to der ive  the following dependence for  the growth ra t e  of a fatigue c rack :  

dl (Nmax ~ - - N m t n  2 �9 Kc'z ~ Nmax 9' 
d n - - - - ~  ~ .+ ,n  Ko,_tVm~n ~ ) (1.1) 

Here  fl and K c a r e  s o m e  constants  of the ma te r i a l ,  n is the number  of loading cyc les  (which plays the 
ro le  of t ime  in these  p rob lems) ,  l is the length p a r a m e t e r  of the c rack ,  and Nma x and Nmi n a r e  the g r e a t -  
es t  and l eas t  value of the s t r e s s  intensi ty f ac to r  during a cycle  at  the t ime  n. In mos t  c a se s  the value of K c 
is c lose  to the rup tu re  s t rength  Kic, with the exception of those cases  where  the fa i lure  takes  place in the 
c o u r s e  of a smal l  number  of cyc les ,  or  in the case  of thin plates  (in the l a t t e r  c a se  K c is a function of the 
plate  th ickness) .  The constant  fl has  the d imensional i ty  of length and c h a r a c t e r i z e s  the inc remen t  in 
c r a c k  length in cycl ic  loading (in o r d e r  of magnitude this constant  is equal to the i nc remen t  in c r ack  length 
.as N i n c r e a s e s  f r o m  N to Kc). The constants  K c and fl must  be de te rmined  on the bas i s  of exper imenta l  
data.  Curves 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 in Fig. 1 were  plotted on the bas i s  of Eq. (1.1) at Nmi n = 0 and 
c o r r e s p o n d  to the following values  of the p a r a m e t e r  fl (in mm):  0.01, 0.03, 0.05, 0.1, 0.2, 0.4, 0.8, 2.0, 4.0, 
8.0. The  a b s c i s s a  sca le  is logar i thmic ,  and 1 m m / c y c I e  is taken as  the unit m e a s u r e m e n t .  This  plot gr id  
is used in what follows in o r d e r  to effect ively de t e rmine  the constants  fl and K c by the method of s u p e r -  
posi t ion.  

The  dependence of the r a t e  of  c r ack  growth on the applied loads is of pa ramount  in te res t  for  ca lcu-  
lating s t rength  under cycl ic  loading. It  has  been studied exper imen ta l ly  by many au thors ;  we analyze only 
those  for  which the data a r e  p r o c e s s e d  in invar iant  v a r i a b l e s  (i.e.,  in N and in d//dn).  The data in the r e -  
maining pape r s  proved  insufficient  for  c o m p a r i s o n  with the theore t i ca l  dependence (1.1). 

2. High-  Cycle Fa t igue  Crack s . One of the f i r s t  expe r imen ta l  pape r s  on the study of the growth of 
c r ack  length under cycl ic  loads,  in which the re la t ionsh ip  between the r a t e  of  c r ack  growth and the s t r e s s  
intensi ty f ac to r  has  been invest igated,  was the work of Donaldson and Anderson [3]. This  paper  contains a 
wealth of m a t e r i a l  obtained on the bas i s  of a study of spec imens  with cen t ra l  and l a t e r a l  through c r a c k s  
( s t r e s s e s  were  applied both to the edges  of the plate and to the edges of  the crack) .  Exper iments  c a r r i e d  
out on al loys of a luminum,  nickel ,  magnes ium,  s tee l ,  etc.  a t tes t  to the ex is tence  of some  co r re l a t ion  be -  
tween d//dn and Nma x. The c l e a r e s t  p ic ture  of the phenomenon is given by expe r imen t s  c a r r i e d  out on the 
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Fig. 1 

exhibits continuous curves  plotted on the 
0.15 mm, K c = 90 kg/mma/~ for the alloy 
T3. These constants  were a r r ived  at by 
Fig. 1. 

A large  number of alloys of aluminum, molybdenum, titanium, etc. have been studied at Nmi n = 0, in 
work repor ted  by Par is  [4], Pearson  [5], and Johnson and Par is  [6]. These authors differed f rom the au- 
thors  mentioned previously in present ing their  resul ts  in the form of severa l  empir ica l  formulas .  Par is  
proposes  the empir ica l  relation d / / dn  = CN 4, which provides an excellent approximation of the exper imen-  
tal data points for  the aluminum alloys 2024-T3 and 7075-T6 in the growth rate  intervals  f rom 10 -5 to 10 -2 
ram/cyc le .  Pearson  gives an approximation of the form d//dn = CN 3"s for the same  mate r ia l s ,  with the per -  
tinent range of growth ra tes  (10 -4 to 10 -3 mm/cyc l e )  apparently too nar row to support  the derivation of any 
analytical  dependences.  P a r i s '  empir ica l  formula  was obtained directly [2] f rom Eq. (1.1) at Nmax/Kc 
0.5, i.eo, for those cases  where the number of cycles  is comparat ively  high (and the c rack  growth ra te  is 
low). It is precise ly  such cases  that were encountered in the experiments  under discussion.  

3. Low-Cycle  Fatigue Cracks.  Par is  I formula  is no longer valid in the case  of low cycle  fatigue 
c racks  (i.e., in cases  where the s t r e s s  intensity factor  Nma x is close to the value of Kc, while the c rack  
growth ra te  is comparat ively  large ,  Par is  ) formula  no longer holds). Various invest igators  using the pow- 
e r - l aw approximation have noted an increase  in the power exponent in that case.  

Carman and Katlin [7] conducted experiments  using specimens of the mar tens i te -ag ing  steels  250 and 
300 (experimental data for 250 steel a re  plotted as hollow c i rc les  in Fig. 3, while data for 300 steel a re  
plotted there  as tr iangles).  The curves  plotted on the basis  of Eq. (1.1) at the assigned values of the con- 
stants fi = 0.2 ram, K c = 710 kg/mm3/2 for 250 steel and fi = 0.09 ram, K c = 675 kg/mm3/2 for 300 steel,  
plotted as continuous curves  in Fig. 3. The agreement  with theory is c lear ly  sa t i s fac tory  within the given 
spread of experimental  data. 

aluminum alloys 2024-T3 and 2024-T6. The rat io Cmin/r  x 
var ied  roughly f rom 0.2 to 0 in the experiments  staged by Donald- 
son and Anderson (there were also some negative values). The 

corresponding values of the ra t io  Nmin/Nma x will c lear ly  vary  
over  the same range and can be neglected on the basis  of the de- 
pendence (1.1), i.e., it is safe to assume Nmi n = 0. By the way, 
this inference was also made by Donaldson and Anderson on the 
basis of their  experiments .  The averaged experimental  data r e -  
ported in [3] a re  plotted in Fig. 2. The broken curve is plotted 
for the alloy 7075-T6, the dash segments indicate the approximate 
spread of points corresponding to N = const  for  each se r ies  of 
tests  and corresponding to the fiducial probabili ty 0.98. The d o t -  
dash curve is plotted for the alloy 2024-T3, and the spread of 
data points is indicated by the d o t - d a s h  segments  at the same 
fiducial probability 0.98. It should be noted that the spread in- 
c r ea ses  as the number of cycles  is decreased.  Figure  2 also 
basis of Eq. (1.1) at the following values of the constants:  f i =  
7075-T6 and fi = 0.10 ram, K c = 90 kg/mm3/~ for the alloy 2024- 
superposing the experimental  curves  and the curves  plotted in 
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Yang [8] has investigated low-cycle  fatigue in severa l  alloys of aluminum and steel .  The exper imen-  
tal resu l t s  a re  plotted in Fig. 4 (data points a re  hollow c i rc les  in the case  of 2024-T6 aluminum alloy, 
t r iangles  in the case  of 310 s ta inless  steel, and c ro s se s  in the case of 301 steel). Yang employed the pow- 
e r - l aw  dependence d//dn = CN ~ with exponent ~ = 5 for the 2024-T6 aluminum alloy, ~ = 7 for 310 steel,  
and ~ = 7 for 301 steel,  in order  to approximate the experimental  points. Upon compar ing these ex- 
per imenta l  resul ts  and the theoret ical  curves ,  we find that Eq. (1.1) provides an excellerr descr ipt ion 
of these data at the following values of the constants :  fi = 0.34 mm, K c = 192 k g / m m  ~/2 in the 
case  of aluminum alloy 2024-T6, fl = 1.0 ram, K c ,= 463 kg/mm3/~ in the case  of steel grade  310, and fl = 
4.0 ram, K c = 700 kg/~mm3/2 in the case  of steel  grade  301. The theoret ical  curves  a re  plotted as continu- 
ous curves  in Fig. 4. 

According to Clark ' s  data [9], the growth ra te  of a fatigue c rack  in a specimen of 7079-T6 aluminum 
alloy (plotted as broken curve  in Fig. 5) and N i - M o - V  steel alloy (do t -dash  curve  in Fig. 6), over  the 
range 10 -5 _< d//dn -< 10 -3 is proport ional  to the third power of the s t r e s s  intensity factor .  Over that range 
C la rk ' s  resu l t s  are  found to c losely  approximate the curves  (1.1) (see continuous curves  in Figs.  5 and 6) 
at the assigned values_p = 0.01 mm and K c = 125 kg/mm ~/2 for the aluminum alloy 7079-T6, and fi = 0.03 
mm, K c = 520 kgimm3/2 for  the N i - M o - V  steel alloy. 

Clark used a broken curve (do t -dash  curve  in Fig. 5) in his investigation of specimens of 5456-H321 
al loy to approximate the experimental  data points. Clark proposed, as the power exponent in the power- 
law dependence; 

c~=2for N/Kc~0.6 a=5.2for  NIKc~>0.6 

Clark ' s  data a re  descr ibed  quite well by the dependence (1.1) at the following values of the constants:  
fl = 0.03 mm, K c = 163 kg~mm3/2 (continuous curve  in Fig. 5). For  the steel HP 9-4-25,  Clark proposed the 
ass igned ~ values:  

~ =  2.6for W/Kc~0.8aad a = 9 f o r  ~/Kc>0.8 

(broken curve  in Fig. 6). The corresponding theoret ical ly  predicted curve  plotted on the basis of Eq. (1.1), 
at fi = 0.02 mm and K c = 460 kg/mm3] ~, is plotted as a continuous curve  in Fig. 6. 

V. N. Markochev [10] has proposed an entirely different dependence of the c rack  growth rate  on the 
s t r e s s  intensity factor  for the range of growth r a t e s  1 0  -3  < dl/dn < 1. On the basis  of his own experiments  
ca r r i ed  out with alloys D167, D16T-1, and V-95, that author proposed a dependence of the form d//dn ~ A 
+ exp(BNmax). The approximation of the experimental  data points of this dependence proposed by Marko- 
chev is plotted in Fig. 7 (dot-dash curve  for  alloy D16T, broken curve  with c ro s se s  for  alloy D16T-1, and 
broken dash curve  for  alloy V-95). A compar i son  with theoret ical  data based on Eq. (1.1) (continuous 
curves  in Fig. 7) reveals  fair ly c lose agreement  between those data at the assigned values  of the constants:  
fl = 0.17 ram, K c =  200 k g / m m ~  2 for alloy D16T, fl = 0.32 ram, K c = 200 kg/mm~, ~ for alloy D16T-1 and fl = 
0.6 mm, K c = 200 kg/mm~/2 for  the alloy V-95. 
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Analysis of the experimental data on the development of fatigue cracks confirms, within the limits 
of experimental e r ror ,  the theoretical  dependence (1.1) over a wide range of numbers of cycles to failure. 
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